
A Brief Introduction to Liberty

Susan Landau and Je� Hodges

13 February 2003

1 Introduction

For the man on the street, the businesswoman in her o�ce, the shopper or
investor at home, identity on the Internet is a straightforward idea with a
complex solution. Using Amazon, there is one sign-on and password; using
United Airlines, another; connecting to L.L. Bean, yet another, and with
Fidelity Investments, a fourth. Within the enterprise, each service | on-line
corporate travel, 401(k) account management, employee bene�ts | may re-
quire its own sign-on and password. The same holds for business-to-business
interactions. The result is cumbersome, the user experience o�putting. The
�rst challenge of Web services is a simple and secure identity mechanism, the
second, and equally important, concern is privacy protection.

Single sign-on and federated network identity (a system for binding mul-
tiple accounts for a given user) are key to solving this. A federated system
allows businesses to manage their own resources including customer data.
Federated network identity enables consumers to retain some control over
which companies have access to their information.

The purpose of Liberty is to develop technical speci�cations for network
identity in a federated environment. It is a project of the Liberty Alliance,
a group organized to establish open standards for network-based identity
interactions.

Developing single-sign-on architecture for federated network identity sys-
tem in the 2002 Internet environment when the only common Web security
tool is SSL (Secure Socket Layer) is technically challenging. Doing so with-
out controlling the most important tool for user interaction | the browser

1

| makes it even more so.1

Liberty's Version 1 architecture is dependent on current browser tools
| SSL, Web redirects, and cookies | all of which have limited security
functionality. Version 2 can assume smarter clients. But Version 1 must
rely on the installed browser base, including Netscape 3.0 and all versions
of Internet Explorer, as well as the limited storage of Web browsers on cell
phones (which is currently restricted on some to a 256-byte URL).

This document was written as an introduction for those unfamiliar with
the Liberty technical speci�cations. This document briey describes the
technologies on which Liberty is built and explains Liberty's fundamental
protocols. Liberty's protocols are complex and this introductory document
does not cover them in full detail. Instead, this document attempts to give
the reader an overview of Liberty Version 1. The current document has
liberally borrowed from a number of documents written by the Liberty team
[1], [3], [4], [6], [5].

The next section discusses Liberty technologies. The reader is assumed
to have some understanding of network protocols, including TCP/IP. Basic
Web protocols will be presented, but since the emphasis of this document is
Liberty protocols, discussion will be brief.

2 Web Browser Basics

The Web browser is the fundamental tool for Liberty interactions. A browser
is simply a program that allows the user to visit Web sites, read news groups,
order items, etc. We begin with a brief overview of HTTP (Hypertext Trans-
fer Protocol), the request-response protocol that de�nes the World Wide
Web.

2.1 HTTP

HTTP was developed by Tim Berners-Lee in the early 1990s as a simple
general-purpose way to transfer information over the Internet. It is an
\applications-level" protocol, sitting above TCP/IP, the Internet transport
mechanism.

1As of March 2002, 93% of Web browsers were Internet Explorer [9].

2

HTTP is implemented in a client program, the browser, and a server
program, called simply a Web server. Downloading information, posting
information (for example, when �lling in an on-line form) is accomplished
through a series of HTTP interchanges.

A Web page consists of either a properly structured document in the
hypertext markup language (HTML) or one of several type of objects that
can be pointed to by an HTML document but cannot themselves point to
anything else. These include plain text pages, images (jpeg and gif), sound
�les (wav, mp3), and more. For the Liberty protocol communications, we
are concerned only with the information in the base HTML �le.

On theWeb, resources are identi�ed by URIs, uniform resource identi�ers.
A URI can be classi�ed as a locator, a name, or both. The reader is probably
more familiar with URLs, or uniform resource locators; a URL is the locator
form of a URI and identi�es a resource through its main access mechanism.
URNs, uniform resource names, are names permanently associated with a
resource (for example, much in the way that ISBN numbers function for
books). Liberty protocols primarily use URLs.

A URL is a string consisting of three parts: the scheme name denoting
the protocol for communicating with the server (typically HTTP, though it
can be ftp, telnet, etc.), the name of the server, and the path name within
the server of the resource being sought. In the URL:

http://www.projectliberty.org/faq.html

http: denotes the scheme name;

www.projectliberty.org denotes the host;
(with optional \:"port number
as in servicedesk.central:8080)

/faq.html denotes the path.
(with possible \?" query)

2.2 How a Web Connection is Established

Things connected to the Internet are identi�ed by Internet Protocol (IP) ad-
dresses, which are 32-bit numbers (usually written in the form of four decimal

3

numbers, each between 0 and 255, separated by periods, e.g. 152.70.8.105).
For use by humans, Internet addresses are given hierarchical names in the
Domain Naming System (DNS). It is these names, rather than IP addresses,
that are included in URIs. The �rst step a browser must take is to resolve the
URI into an Internet destination. When a user clicks on a URI, the browser
sends a query to a DNS (domain name server), which replies with the nu-
meric Internet address of the host named in the URI. The browser then sets
up a TCP connection with the host. Once this connection is established, the
browser makes an HTTP \Request" and the destination server replies with
an HTTP \Response."

The format of an HTTP Request is a request line, followed by optional
headers and an optional message body. The request line includes a request
method, the URI being requested, and the HTTP protocol version. There
are a number of di�erent types of request methods; for Liberty, the important
ones are:

� GET: retrieves whatever information is identi�ed by the Request-URI;

� HEAD: similar to GET, except that no message body is retrieved, only
a header

� POST: While HEAD and GET retrieve information, POST updates
information, e.g., by �lling out requested information in a form. Since
a POST is pushing information onto the server, users that make a
POST request must demonstrate that they have appropriate authority
to post the information.

A POST can also be used to take the body of a request and use it as
input to a program identi�ed by the Request-URI in the Request-Line,
perhaps a mail handler or a bulletin board manager.

The function that the POST does is determined by the server and
depends on the Request-URI [10].

For the example http://www.projectliberty.org/faq.html, the HTTP Re-
quest message above might be:

GET /faq.html/ HTTP/1.1.

(Using a query statement into a database, the GET command can also be
used to submit information to a program. There are subtle di�erences be-
tween this use of GET and POST; we will not discuss these here.)

4

Optional headers may include identi�cation information about the user's
browser, e.g., Mozilla 4.0, encoding information about the form of the re-
sponse, e.g., fr (French), etc. A typical request message might be:

GET /faq.html/ HTTP/1.1
Host: www.projectliberty.org
User-Agent: Mozilla 4.0
CRLF

All browser requests end with CRLF (carriage return, line feed).

The HTTP Response begins with a Status-Line that has three �elds: the
server's protocol version number, the response code, and a natural language
phrase. Response codes include:

� 200 OK

� 204 No Content2

� 301 Moved Permanently (in this case a new URI is speci�ed in Location:
header of the response message)

� 302 Found (The requested resource temporarily resides under a di�erent
URI.)

� 307 Temporary Redirect

� 400 Bad Request (syntax unrecognizable by server)

� 403 Forbidden

� 404 Not Found

� 505 HTTP Version Not Supported3

A typical HTTP response might be:

HTTP/1.1 200 OK

As with the HTTP Request, the HTTP Response has optional header lines.
These can include the type of connection (whether the server will close the

2The response to a POST request is 200 OK or 204 No Content[10].
3See [10] p. 39 for a full list of response status codes.

5

TCP connection after sending the message), the date (time and date of HTTP
response), Last-Modi�ed (so that the client browser can know whether to
retrieve the requested object from a local cache instead), etc. The following
is a typical HTTP response:

HTTP/1.1 200 OK
Connection: close
Date: Monday, 6 May 2002 14:17:17 GMT
Server: Apache/1.3.0 (Unix)
Last-Modi�ed: Tuesday, 30 April 2002 18:03:02 GMT
Content-Length: 5117
Content-Type: text/html

3 Liberty Technologies

The Liberty user, who is called the Principal, interacts with two types of en-
tities: Service Providers (businesses and information providers of the on-line
world) and Identity Providers: entities that maintain and manage identity
information. Single sign-on | the ability of the Principal to authenticate
herself once per session with an Identity Provider and then use that authen-
tication to create sessions with various Service Providers and perhaps even
other Identity Providers without having to reauthenticate herself | is a key
feature of Liberty. The Principal needs a simple way to authenticate her-
self at the Service Provider even if she has not already visited an Identity
Provider. This requires a mechanism by which the Service Provider obtains
information from the Identity Provider con�rming the Principal's identity.
This should also work for a Principal who is visiting a Service Provider and
who has previously authenticated herself with an Identity Provider and now
wants the Service Provider to accept this authentication.

There are several protocols needed. At present, Authentication on the
Web is normally accomplished by presenting a name and demonstrating
knowledge of a corresponding password. This method is also expected to
predominate in the �rst release of Liberty, but Liberty does not limit Iden-
tity Providers to a particular scheme. More complex and secure mechanisms
involve cryptographic signatures, certi�cates, or challenge/responses proto-
cols. Identity Federation is a way of binding or associating multiple accounts

6

for a given Principal at various Liberty-enabled entities | Service Providers
and (perhaps multiple) Identity Providers).

One way the on-line world di�ers from the `real' world is the ease with
which a Principal's movements can be traced and a dossier of her Web expe-
riences compiled. For this reason, Liberty supports Pseudonyms, the assign-
ment of an arbitrary name by the Identity or Service Provider to identify a
Principal. The pseudonym has meaning only in the context of the relation-
ship between the Identity Provider and Service Provider. Thus a Principal's
Web experience is harder to follow. Finally, an important part of the Liberty
experience is Single Logout.

To sign on, a Liberty Principal needs to be directed from the Service
Provider to an Identity Provider, and to federate identities, a Liberty Prin-
cipal also needs to be redirected from a Service Provider to an Identity
Provider, or vice versa. To dissolve federating links, the same is true. The
Principal could accomplish this by connecting to a new URI, conduct busi-
ness (Sign-On, perform on-line Identity Federation, etc.), and return. But
Liberty seeks \seamless" user-friendly solutions, where the redirection is done
not by the Principal, but automatically by the system.

Liberty protocols use Web redirects, in optional combination with SOAP
(Simple Object Access Protocol), to exchange SAML-encoded [11] identity
information and accomplish Single Sign-On, Identity Federation, etc. Liberty
protocols use SSL to encrypt these Web communications and provide user
con�dentiality.

3.1 Web Redirects

Liberty makes use of the HTTP command 302 \Temporary Redirect," (which
was originally designed for a somewhat di�erent purpose.4 Such 302 Web
Redirects work by placing the URI of another location in the Location �eld
of an HTTP Response. The browser receiving such a response is obliged
to perform an HTTP GET specifying the URI so conveyed in the HTTP
response. This allows Liberty to create a \communications channel" between
Identity Providers and Service Providers, as will be explained in detail in the
next section.

4According to RFC 2616, \a 302 Temporary Redirect means that the requested resource
temporarily resides under a di�erent URI."

7

During a Liberty Web redirect, some private information about the user
often travels in the HTTP message. This information needs to be protected.
This is accomplished through the use of HTTPS, the secure version of HTTP
that uses SSL (Secure Socket Layer) for transporting HTTP messages. A
Web Redirect HTTP Response looks like:

HTTP/1.1 302 FOUND
<other headers>
Location: https://< host name and path>?<query>
<other HTTP 1.1 components>

3.2 SSL

SSL encrypts all HTTP communications between the client and server, so
that even if an HTTP message is intercepted, the user information is pro-
tected. SSL has three main steps: the browser authenticates the server, the
browser generates a session key, the server and browser agree all further com-
munications will be encrypted. In slightly more detail, the protocol is given
below. For the casual reader of this document, the brief explanation above
should be su�cient (more details may be found in [13].)

1. The Principal's browser sends the server the client browser's SSL ver-
sion number and cryptographic preferences. (SSL supports a choice of
cryptographic algorithms.)

2. The server responds with its SSL version number, cryptographic pref-
erences, and public-key certi�cate.

3. The Principal's browser veri�es that the server's certi�cate is valid. If
it is, the browser uses the CA's public key to verify the certi�cate's
signature and determine the server's public key. If the certi�cate is
not valid, what happens next depends upon the browser. The browser
may inform the user that a secure and authenticated connection can-
not be established; the browser may provide a pop-up window saying,
\Expired Certi�cate; do you want to continue anyway?," etc.

4. The browser generates a session key, encrypts this with the server's
public key and sends the encrypted key to the server.

8

5. This is the key in which all future messages will be encrypted. The
browser sends another message saying that the handshake (key estab-
lishment) part of the communications is over; this message is encrypted.

6. The server sends a message to the browser saying that all future mes-
sages will be encrypted. The server also sends a message saying that
the handshake part of the negotiation is now over; this message is also
encrypted.

7. The session key has been established and all future communications
between the client and server are encrypted.

SSL gives a choice of cryptoalgorithms for the computation, including
RSA for the key exchange, and RC4, DES, Triple-DES, and | in new
browsers | AES for encryption.

3.3 Cookies in Liberty and the Introduction Problem

HTTP is a stateless protocol; by itself it does not enable the maintenance of
state information about or on behalf of the user. Cookies are a way to get
around this state of statelessness and enable the server to store information,
e.g., about users. State information is stored at the client and is then sent to
the server the next time the user accesses that server. A cookie is an HTTP
header written by the server to the browser's memory. Put another way,
a cookie is a text string consisting of domain, path, lifetime, and value (a
variable the website sets) that can save information during an HTTP session
or between sessions.

If the cookie's lifetime has not elapsed when the browser is shut o�, the
cookie is written to a �le on the browser's hard drive. In that case, we call
it a persistent cookie. Each time the browser is turned on, the cookie �le is
read from disk and each time the browser is shut o�, the cookie �le is written
to disk. Cookies are deleted when their lifetimes expire or when the cookie
cache is full. (Netscape, for example, only allows 300 cookies in the cookie
�le.) In that case, the oldest cookies are deleted �rst.

Browsers typically give users a choice about how they can handle cookies,
e.g.:

� Accept all cookies

9

� Only accept cookies originating from the same server as the page being
viewed5

� Do not accept or send cookies

� Warn me before accepting a cookie [Netscape 4.76]

Liberty designers cannot assume that \Accept all cookies" is enabled by
default in the installed browser base. Furthermore, \Accept all cookies" does
not allow the user control over her system and is a poor security choice. So
cookies cannot be used to satisfy the cross-DNS-domain information sharing
needed in Liberty. But cookies can be and are used in Liberty.

Liberty Trust Circles (also called Circles of Trust) are federations of Iden-
tity and Service Providers engaged in on-line interactions based on Liberty-
enabled technologies. These companies have agreed on how they will verify
on-line identities.

Suppose there is more than one Identity Provider in such a Trust Circle.
Providers will need a way to see which Identity Providers a user uses, and
this must work across DNS domains. This is known as the \Introduction
Problem." An optional Liberty approach is to create a common domain for
the Trust Circle that will be accessible to all parties in the Trust Circle.
For example, if the Identity Provider is Airline.inc, the Service Provider is
CarRental.inc, and the Trust Group is AAG.inc (Airline A�nity Group.inc),
then the DNS domain will be XXX.AAG.inc. That is, the Identity Provider
will be Airline.AAG.inc, the Service Provider will be CarRental.AAG.inc,
etc. ([1], pp. 8-13.)6

5This means only accept cookies with the same address as the page being viewed.
6The common domain cookie enables the Service Provider to discover with which Iden-

tity Providers the Principal has recently interacted. So the Service Provider has to obtain
the cookie. It does so via the Web redirection trick.
The Service Provider sends an HTTP Redirect to the Principal, with the location header

set to the URI hosting the cookie transfer service in the common domain. The transfer
service URI must specify HTTPS as the transport scheme. The URI in the location header
includes another URI embedded in the query parameter which the cookie transfer service
will use to redirect the response back to the Service Provider.
The Principal sends an HTTPS GET to the Common Domain. The CommomDomain

cookie transfer service responds to the Principal with an HTTP Redirect to the Service
Provider. The location header is the return URI for the Service Provider. Again, HTTPS
is speci�ed for the transmission. The cookie value is included in the query component of

10

When a Principal authenticates herself with a particular Identity Provider,
the Identity Provider will redirect the Principal's browser to the Identity
Provider's common domain service with a parameter indicating that the Prin-
cipal is using that Identity Provider7. The common domain service writes
a cookie with that preference and redirects back to the Identity Provider.
Thereafter, Service Providers and other Identity Providers in the Trust Cir-
cle will be able to tell which Identity Provider the Principal used.

As noted, this common domain cookies approach is optional. Liberty
implementations may use other methods, e.g., simple hand con�guration to
list \known" Identity Providers, thus also solving the Introduction Problem.

3.4 Exchanging Identity Information: SOAP, SAML,

and Web Redirects

Liberty protocols exchange identity information through pre-existing proto-
cols and languages, SOAP and SAML, respectively, as well as Web redi-
rects. SOAP, Simple Object Access Protocol, is a peer-to-peer protocol for
exchanging structured and typed information between peers in a distributed
environment. SAML, Security AssertionMarkup Language, is an XML-based
security assertion framework [12].

The SOAP envelope is a framework for expressing what is in a mes-
sage, who should handle it, and whether it is optional or mandatory. SOAP
also has encoding rules for exchanging application-de�ned datatypes, exactly
what is needed in Liberty. SOAP also has Remote Procedure Calls (RPCs),
which are used in Liberty.

SAML de�nes three types of assertions: authentication, attribute, and
authorization decision. Liberty uses authentication assertions, which state
that subject S was authenticated at time T by means M. Note: SAML does
not manage credentials; it only reports on them.

In summary, SAML authentication assertions are conveyed by either
SOAP or Web Redirects in order to accomplish exchange of identity and
authentication information.

the return URI; it is the list of Identity Providers. The Principal's browser redirects the
HTTPS to the Service Provider, which reads the cookie to determine the Identity Provider
for the Principal. (This discussion is taken from [1], pp. 35-39.)

7This interaction is speci�ed as the \Identity Provider Introduction" Pro�le in [3], p.
45.

11

4 Liberty Version 1 Protocols

4.1 The Liberty \Actors"

Liberty posits three actors: Principals, Service Providers, and Identity Providers:
A Principal is a user.
A Service Provider is an organization o�ering Web-based services to Prin-

cipals. It can be car rental or airline, it can be a seller of widgets for just-
in-time production, an on-line New York Times subscription, government
agencies providing information, �nancial services , etc.

An Identity Provider is a Service Provider o�ering additional services and
incentives so that other Service Providers a�liate with the Identity Provider
and Principals choose to use the Service Provider as their Identity Provider.
The services may be �nancial, they may include connections with other types
of Web services (e.g., calendar or address-book related features), they may be
a corporate identity authority that enables access to various company Service
Providers (e.g., an on-line travel agency, an outsourced bene�ts o�ce), etc.
The important service an Identity Provider gives is authentication of the
Principal.

4.2 Requirements Summary

Liberty seeks to build a mechanism for federated identity. Key to Liberty
is interoperability across a wide range of platforms. The Engineering Re-
quirements Document states that the technology must provide the \widest
possible support for [di�erent] operating systems, [di�erent] programming
languages, [and di�erent] network infrastructures" ([4], p. 5). Thus Liberty
technologies:

� should enable individuals (customers and businesses) to securely control
their personal information;

� should be open standards for single sign-on allowing decentralized au-
thentication;

� should be open standards for network identity spanning all types of
network devices; and

12

� should work internationally ([4], p.4).

Liberty Version 1 supports four main functionalities: Authentication,
Pseudonym, Identity Federation, and Single Logout. Liberty's broad princi-
ples translate into the following recommendations for Liberty-enabled imple-
mentations:

� Identity Federation

{ The Principal is informed about Identity Federation and Federa-
tion Termination (this is also called Defederation).

{ Service Providers and Identity Providers inform each other about
identity defederation.

{ Identity Providers notify appropriate Service Providers about ac-
count termination at the Identity Provider.

{ Service Providers and Identity Providers provide the Principal
with a list of federated identities at the Service Provider/Identity
Provider in question. ([4] pp. 5-6)

� Authentication

{ Liberty-enabled Identity Providers and Service Providers will sup-
port all methods of navigation including, but not limited to, click-
throughs, bookmarks/favorites, URIs.

{ The Identity Providers provide the Principal with an authenti-
cated identity prior to the Principal presenting any credentials or
personally identi�able information.

{ Identity Providers and Service Providers will mutually authenti-
cate each other; both Identity Providers and Service Providers
ensure con�dentiality, integrity, and authenticity of the informa-
tion they exchange about Principals.

{ Identity Providers and Service Providers will support various types
of authentication mechanisms.

{ To preserve Principals' privacy, Identity Providers and Service
Providers will exchange a minimal set of information about each
Principal: authentication status, instant (the time at which au-
thentication occurred), method, pseudonym. ([4], pp.6-8)

13

� Pseudonym

{ To preserve Principal anonymity, Identity Providers and Service
Providers will support unique pseudonyms on a per Identity Fed-
eration basis across all Identity Providers and Service Providers.
Thus a Principal might be Scott00003 to the Identity Provider,
and ScottMcN to the Service Provider. ([4], p. 8)

� Single Logout

{ When a Principal logs out of an Identity Provider, all appropriate
Service Providers will be noti�ed ([4], p. 9).

These requirements have more detailed instantiations in the Engineering
Requirements Document [4].

4.3 Liberty Protocols

Liberty Version 1 de�nes four protocols:

� Single Sign-On and Federation

� Name Registration

� Federation Termination Noti�cation

� Single Logout [6].

The �rst is described in detail below. Name Registration is an optional
protocol and is not further described here. Federation Termination and Single
Logout are briey described below.

Each protocol may be may be concretely implemented in more than one
way. Each way is called a \pro�le" of the protocol. In order to cover the
widest possible range of possible users8 four \pro�les" of this protocol are
de�ned: Liberty Browser Artifact9 (using GET), Liberty Browser POST,

8These include web browsers, mobile handsets, and other con�gurations (e.g., those
involving proxies),

9This is through a SAML artifact, which is a small random number designed to point
to SAML assertions. The SAML artifact is passed between sites by the browser via the
URL query strings.

14

Liberty WML POST (WML is the markup language typical of mobile hand-
sets), and Liberty Enabled Client/Proxy. The di�erences in the pro�les are
minimal.10 This document seeks to give a clear but concise explanation of
Liberty. It cannot include all cases and all details. So with the exception of
the Identity Federation protocol, where all variations are shown, the proto-
cols are presented only in their most typical fashion using HTTP GETs.

Single Sign-On and Federation

Single Sign-On and Federation is the most complex of the Liberty proto-
cols. We will �rst describe the protocol from the Principal's vantage point,
then sketch in moderate detail what the protocol is actually doing, and con-
clude with some of the technical details. This discussion appears with greater
precision in ([3], pp. 12-15).

Assume the Principal is at a Service Provider. For simplicity, assume
that the Principal has already opened an account at a Liberty-enabled Iden-
tity Provider but has not necessarily authenticated herself to the Identity
Provider during the current Web session. Furthermore, assume all HTTP
Requests are HTTP GETs (other pro�les of this protocol are illustrated in
the �gure on page 19).

The Principal is at a Service Provider and she decides she wants a service,
perhaps updating her bene�ts selection with an outsourced on-line bene�ts
o�ce, perhaps ordering widgets needed from another site in just-in-time fac-
tory production. She needs some means to inform the Service Provider that
she wants to login with her Identity Provider. There may be a button to
an a�nity group site on the Service Provider's Web page, or the Service
Provider may have some Liberty-enabled Identity Providers listed, or the
Service Provider may have a separate log-in page. Whatever the mechanism,
the Principal says \I want to authenticate myself." The Service Provider
sends the Principal's browser over to the appropriate Identity Provider, who
produces a credential (there will be more detail later on the exact form of
the credential) for the Service Provider upon Principal login, and redirects
the Principal's browser back to the Service Provider. Although complex in
detail, this set of actions produce a seamless experience for the Principal.

10The overview for these protocols may be found in the Liberty Architecture Overview.
For detailed instructions, the reader should see the Liberty Bindings and Pro�les

Speci�cations.

15

Sketching the Single Sign-On and Federation protocol in more detail, we
have it beginning with the Principal's browser sending an HTTP GET to the
Service Provider. The Service Provider's website responds with an HTTP
302 Redirect containing two important URIs. The �rst is the URI to which
the Principal's browser should now redirect the original GET command; the
other is an embedded URI that refers back to the Service Provider.

Following the redirect response, the Principal's browser sends an HTTP
request to the Identity Provider specifying the URI from the previous re-
sponse, including the embedded Service Provider's URI. The Identity Provider
responds to the Principal with a credential (more on this later) via an HTTP
Redirect pointing back to the Service Provider; this information has been
extracted from the previously embedded URI that the Service Provider had
supplied. The Principal's browser sends an HTTP Request to the Service
Provider specifying the URI taken from the location �eld of the response
returned from the Identity Provider. Note that this URI may itself contain
an embedded URI pointing back to the Identity Provider.

The Service Provider now has a form of credential for the Principal, either
an assertion or an artifact. If it is an assertion, the Service Provider will send
an HTTP Request with the artifact to the Identity Provider who will respond
with an assertion (or not). The Service Provider processes the assertion, and
sends an HTTP Response to the Principal, completing the original HTTP
request that began this sketch.

Restating the above protocol in more detail.

1. At the Service Provider website, the Principal selects an Identity Provider
for her identity authentication (or the Service Provider selects one for
her based on whatever approach is being used for introduction; see Sec-
tion 3.3). She may press a \button" at the Service Provider's website
to select an Identity Provider, she may �ll in a form at the Service
Provider's website (or she may be requesting some resource and the
Service Provider determines the Identity Provider from context (see
Section 3.3), the mechanism that is used to transmit this information
is an HTTP Request submitted by the Principal's browser.

2. The Service Provider determines the address of the Identity Provider
and concocts an alternate URI pointing at the Identity Provider.

16

3. The Service Provider responds to the Principal's browser with an HTTP
Response 302 (\Redirect") and an alternate URI in the location header
�eld. The alternate URI �eld has a second, embedded URI pointing
back to the Service Provider.

Now the Liberty protocol varies, depending on whether it is based on
GETs, POSTs, or WML browsers. What will be explained here and
onwards is the most common scenario, HTTP GETs.

4. The Principal's browser performs an HTTP GET Request to the Iden-
tity Provider with the URI from the location �eld received in Step 3 as
the argument of the Request.

5. The Identity Provider processes the Principal's HTTP GET Request. If
the Principal has not yet been authenticated by the Identity Provider,
authentication occurs now.

6. The Identity Provider responds with an authentication assertion, a
SAML artifact, or an error. The response is conveyed using HTTP
Redirect 302 whose location header contains the URI pointing to the
Service Provider (this has been extracted from the GET argument URI
of Step 4).

7. The Principal's browser obtains the artifact or assertion.

The Principal sends an HTTP GET Request to the Service Provider us-
ing the complete URI taken from location �eld of the response received
in Step 6.

8. This step occurs only if the Step 6 response was a SAML artifact. (Re-
call that a SAML artifact is a small random number designed to point
to SAML assertions. It is passed between sites using Web redirects and
embedding it in URL query strings.)

The Service Provider now needs to get an authentication assertion cor-
responding to the artifact it received. The Service Provider sends a
SOAP message to the Identity Provider, requesting the assertion.

9. This step occurs only if the Step 6 response was a SAML artifact.

The Identity Provider processes the request, and responds with the
corresponding assertion.

17

10. The Service Provider sends an HTTP Response completing the Prin-
cipal's original HTTP request in Step 1.

(A more detailed discussion can be found at [3], pp. 12-15, from which
this discussion is excerpted.)

The �gure below shows the set of actions described above, along with
variations for (b) Single Sign-on Browser POST, (c) Single Sign-on WML
POST, and (d) Single Sign-on Liberty Enabled Client/Proxy.11

11Pro�les (a), (b), (c), and (d) are, respectively, �gures 2, 3, 4, and 5 in [3].

18

SP IDP

10: Process Assertion

2: Obtain IDP

Principal

1: GET <inter-site transfer service host name and path>?LRURL=<resource URL>0

8a: SOAP POST: <samlp:Request>0

9a: 200 OK SOAP: <samlp:Response>0

11a: 200 OK: <resource URL>0

6a: 302; Location: <SP Assertion Consumer URL>?LRURL=<resource URL>&SAMLart=<...>0

7a: GET <SP Assertion Consumer URL>?LRURL=<resource URL>&SAMLart=<...>0

5: Process Authn Request

3a: 302; Location: <IDP Simgle Sign-On Service>?<AuthnRequest>0

4a: GET <IDP Single Sign-On Service>?<AuthnRequest>0

3b: 302 Location < IDP Single Signon>?<Auth Request>
3c: 200 OK w/WML POST<IDP: Single Signon Service: LAREQ= AuthnRequest>
3d: 200 OK < AuthnRequest Envelope>; Liberty-Enabled Header

4b: GET <IDP Single Signon >?<AuthnRequest>
4c: POST <IDP Single Signon Service>?LAREQ=AuthnRequest

19

4d: SOAP POST <AuthnRequest>; Liberty-Enabled Header()

6b: 200; FORM; METHOD=POST;ACTION=<SP assertion consumer
URL:LARES=<AuthnResponse>
6c: POST <SP Assertion Consumer URL: LARES=AuthnResponse>
6d: 200 OK SOAP: <SP AuthnResponseEnvelope>;Liberty-Enabled Header()

7b: POST <SP assertion consumer URL; LARES=<AuthnResponse>
7c: POST <SP Assertion Consumer URL>: LARES=<AuthnResponse>
7d: POST <SP Assertion Consumer URL>: LARES=<AuthnResponse>Liberty-
Enabled Header

8b:, 8c:, 8d:, 9b:, 9c:, 9d: |

11b: HTTP Response; Liberty-Enabled Header

11c: HTTP Response; Liberty-Enabled Header

11d: HTTP Response; Liberty-Enabled Header12

4.4 Federation Termination

Just as Principals can federate their identities, they also need to be able to
perform a federation revocation; this is also called Federation Termination or
defederation. Federation Termination can be initiated at an Identity Provider
or a Service Provider.

We begin with the case where the Principal initiates the request at an
Identity Provider.

1. The Principal sends an HTTP Request to the Identity Provider spec-
ifying the Service Provider with whom Federation Termination should
occur.

2. The Identity Provider's Federation Termination service responds with
an HTTP Redirect to the Service Provider. The location header �eld is
set to the Service Provider's Federation Termination URI, which must
specify HTTPS as the URL scheme.

12The exact form of the HTTP response in this �nal step will vary depending upon how
the overall interaction began. If the Principal clicked on an explicit \Login" link, then
this response is likely to be a \200 OK." If the login interaction was begun because the
Principal had selected a protected resource, it may be a 200 OK or some error depending
on whether the Principal successfully authenticated herself and is authorized to access the
resource.

20

3. The Principal sends an HTTPS Request to the Service Provider with
the FederationTerminationNoti�cation information attached to the URI
of the HTTP GET.

4. The Service Provider processes the request.

5. The Service Provider's Federation Termination sends an HTTP Redi-
rect to the Principal with the location header URI being the Identity
Provider.

6. The Principal sends an HTTP Get to the Identity Provider.

7. The Identity Provider responds with an HTTP 200 OK and a textual
message, con�rming that it has requested terminating the identity fed-
eration with the Service Provider.

The case where the request is initiated at the Service Provider is han-
dled as above, with the roles of the Identity Provider and Service Provider
switched. (For a more detailed discussion of Federation Termination, see [3],
pp. 28-34, from which this discussion is excerpted.)

4.5 Pseudonyms

Liberty, with its system of multiple Identity and Service Providers needs a
mechanism by which Principals can be uniquely identi�ed across multiple
domains. At the same time, Principal privacy demands that a Principal not
be required to have a single identi�er across all domains.

Liberty solves this problem by having each member of a Trust Circle
create a \handle" for each Principal. Members can create multiple handles
for each Principal, but each Identity Provider must have a single handle for
each (Principal, Service Provider) pair, even if the Service Provider maintains
multiple websites.

The Identity Provider and Service Provider in a federation need to re-
member each other's handle for the Principal, so they create entries in their
Principal directories for each other and record each other's handle for the
Principal.

Since identities are veri�ed across a chain (there is no \transitive" trust
in Version 1 Liberty), there is no value in a \universal" identity.

21

4.6 Single Logout

Like Federation Termination, Single Logout can be initiated at either the
Identity Provider or Service Provider. In either case, the Identity Provider
then communicates a logout noti�cation to each Service Provider with which
it has established a session for the Principal. A more detailed discussion can
be found at [3], pp. 34-45, from which this discussion is excerpted.

We will begin with the Principal initiating a logout request at the Identity
Provider.

1. The Principal signals she wants to log out; this is done via an HTTP
GET to the single logout service URI at the Identity Provider.

2. For each Service Provider for which Identity Provider has provided
an authentication assertion during the Principal's current session, the
Identity Provider's single logout service sends an HTTP Redirect to the
Principal. For each redirect, the location header is set to the Service
Provider's single logout service URI; the location header contains a
query component (LogoutNoti�cation).

3. For each of these Service Providers, the Principal ful�lls the redirect.

4. Each Service Provider processes the redirect.

5. Each Service Provider's single logout service responds and sends the
Principal an HTTP redirect with location header being the Identity
Provider (obtained, as per usual, from the location header information
provided by the HTTP Redirect that came from the Identity Provider).

6. The Principal's browser ful�lls this redirect request. The Identity
Provider repeats the process beginning with Step 2 if there are more
Service Providers to contact, otherwise it proceeds to Step 7.

7. The Identity Provider replies with a HTTP 200 OK message ([3], pp.
35-41).

If the Principal initiates the single logout noti�cation at a Service Provider
instead, then the process is only slightly more complicated. The Principal
sends an HTTP Request to the Service Provider indicating the session logout

22

at the associated Identity Provider. The Service Provider responds with an
HTTP Redirect to the Identity Provider with the location head URI set to
the Identity Provider's single logout service and things proceed | essentially
| as above ([3], pp. 41-45). (For a more detailed discussion of Single Logout,
see [3], pp. 34-45, from which this discussion is excerpted.)

5 Liberty Security

The intent of the Liberty Version 1 speci�cations is to enable single sign-on at
multiple sites substantially as secure as giving a name and password at each
site. We believe Liberty has succeeded in these goals. But because Liberty
Version 1 is built on top of present-day Internet technlogy, some security
issues remain. The following is based on [8], which discusses these issues in
greater detail.

5.1 Risks of Single Sign-on

We are not aware of any particular vulnerabilities in the Liberty Version 1
Single Sign-on protocols per se. However, these protocols exacerbate well-
known Internet insecurities, including:

� Risks of Weak Passwords

\Reusable" passwords | a password that is used multiple times to
gain access to a site | are a known vulnerability, as are weak, guess-
able passwords. Such poorly-choosen passwords can be particularly
problematic in a single sign-on environment.

If a principal uses strong and unrelated passwords at multiple sites,
she has better security than in the single sign-on situation. But if she
does not, then the vulnerability of multiple sites is essentially the same
regardless of whether single sign-on is used.

Note Liberty Version 1 does not specify any particular authentication
technique. Identity providers can choose to have stronger forms of
identi�cation.

� Risks of Embedded Login Forms

23

In the interests of providing a seamless login service, one option is
for a Service Provider to o�er an Identity-Provider embedded form for
authentication. While there is security risk in this, the embedded form
mechanism does run the risk of teaching the user to do the wrong thing.

The principal is potentially revealing her authentication credentials to
the service provider in clear text. If authentication is to be done via em-
bedded forms, contract terms between Identity Providers and Service
Providers regarding privacy and data ownership should be clear.

� Risks of Internet Deployment

If a principal accesses a Liberty-enabled browser at a public site (e.g.,
an airport kiosk), and the browser subsequently hangs before the user
has completed her session, there is a danger that a rogue may take over
the legitimate user's session. This is, of course, a general problem, not
a Liberty-speci�c one.

The Security and Privacy Issues document [8] recommends that Liberty-
based identity servcies have a mechanism that enable the user to later
return, via a di�erent browser session, and kill o� the old session. To
prevent session hijacking, [8] recommends short session times for Iden-
tity Providers.

� Risks of Weak Cryptography

The privacy and security protection of the principal's data is prin-
cipally accomplished through the use of SSL/TLS. One of the most
vexing issues in securing web services is that the currently-installed
browser base includes many browsers that only have weak 40-bit cryp-
tography enabled. This poses a serious privacy and security risk since
the principal's encrypted communications can be easily recovered to its
unencrypted form.

The solution, clearly, is that the cipher suites have minimum e�ective
key size of 112-key bits. The Liberty speci�cations recommend this.

The real lesson is that principals, Identity Providers, and Service Providers
should practice due diligence.

24

5.2 Liberty Security Requirements

As the New Yorker cartoon says, \On the Internet, no one knows you're a
dog." That presents the most serious type of threat to Liberty interactions.
How does a Principal, Service Provider, or Internet Provider know that the
party on the other end is who they saw they are?

Liberty speci�cations attempt to address this issue.

� Service Providers are required to authenticate Identity Providers using
Identity Provider Server-side Certi�cates.

� Each Service Provider is required to be con�gured with a list of au-
thorized Identity Providers; each Identity Provider is required to be
con�gured with with a list of authorized Service Providers.

� The authenticated Identity of an Identity Provider must be displayed to
a Principal before the Principal presents personal authentication data
to that Identity Provider.

� Liberty protocol messages and some of their components are generally
required to be digitally signed and veri�ed.

� In interactions between Service Providers and Identity Providers, re-
quests are to be protected against replay attacks. (A replay attack
is one in which challenges and responses are recorded and then the
responses are used again later by an impersonator.)

(These are excerpted from [1] pp. 16-17.)

There are also communication and message security requirements in Ver-
sion 1 Liberty([1], p. 16):

Security Mechanism Channel Security Message Security
(for Requests, Assertions)

Con�dentiality Required Required
Per-message data integrity Required Required
Transaction Integrity | Required
Peer-entity authentication Identity Provider | Required |

Service Provider | Optional
Data Origin Authentication | Required
Nonrepudiation | Required

25

Nonetheless, spoo�ng attacks and other types of attacks are possible.

5.3 Threat Scenarios

The Version 1 Liberty protocols subscribe to a typical Internet threat model,
which assumes that the intermediary and end-systems participating in Lib-
erty protocol exchanges have not been compromised. This is a rather strong
assumption. The Version 1 protocols include some protections against such
compromise, but the Version 1 protocols are not fully hardened. This is a
design decision. It really is impossible to have any other choice if Liberty is to
be launched now on the currently-installed browser base. For more informa-
tion on the threat scenarios considered and the applicable countermeasures,
see [3].

Liberty designers have classi�ed attacks by:

� Type of Actors:

{ Rogue Entities: Rogue entities are those that misuse their privi-
leges. Rogue actors may be Principals, Identity Providers, or Ser-
vice Providers. They attempt to use their relationship to escalate
privileges or masquerade as another entity.

{ Spurious Entities: Spurious entities are those who masquerade as
a legitimate entity or are completely unknown to the system.

� Type of Attack:

{ Passive: The adversary monitors the communication channel.

{ Active: The adversary may transmit messages to obtain informa-
tion.

� Collusion: Two or more entities may collude to launch an attack.

� Denial-of-Service Attacks: The prevention of access to a resource caused
by overloading the resource with spurious requests.

Through the use of SSL and federation, Version 1 Liberty protocols pro-
tect Principals' privacy. The protocols are designed to prevent:

26

� replay attacks, in which an entity captures an authentication assertion
and attempts to \replay" it and thus impersonate a principal;

� denial-of-service attacks, through signing of authentication requests
(this is a partial solution only);

� collusion between two principals, through matching of IP address with
the AuthenticationLocality of the SAML artifact (this is only a partial
solution, since it may be defeated by source IP address spoo�ng).

There are no protections against a rogue Service Provider impersonating
a Principal at another Service Provider, or a rogue Identity Provider, nor
against Service Providers colluding to violate the privacy of the Principal.
In a sense, these are out-of-band privacy and security issues.

For more detail on these issues, see [3] pp. 51-55., from which this dis-
cussion has been excerpted.

6 Conclusion

Liberty Version 1 was designed to simplify the process of signing on to multi-
ple sites while still preserving users' privacy and security. The design decision
was that this should be done building on top of the currently-installed user
base. As this document and the Security and Privacy Concerns in Liberty Al-
liance Version 1.0 Speci�cations [8] make clear, in the Internet environment,
security is fragile, and implementors | and users | must exercise due dili-
gence. As mentioned earlier, the intent was that single sign-on should be
substantially as secure as giving a name and password at each site. We
believe that Liberty Version 1 has met those goals.

Acknowledgements: As noted in the text, we have extensively used mate-
rial from the Liberty documents below. We bene�tted from comments from
Gary Ellison, Whit�eld Di�e, and Seth Proctor. Any remaining errors are
our responsibility.

27

References

[1] J. Hodges (ed.), Liberty Architecture Overview, Version 1.1, 15
January 2003 http://www.projectliberty.org/specs/liberty-architecture-
overview-v1.1.pdf

[2] L. Kannappan, M. Lachance, and
J. Kemp (ed.), Liberty Architecture Implementation Guidelines, Ver-
sion 1.1, 15 January 2003, http://www.projectliberty.org/specs/liberty-
architecture-implementation-guidelines.v1.1.pdf

[3] J. Roualt
and T. Wason (ed.), Liberty Bindings and Pro�les Speci�cation, Ver-
sion 1.1, 15 January 2003, http://www.projectliberty.org/specs/liberty-
architecture-bindings-and-pro�les-v1.1.pdf

[4] S. Allavarpu (ed.), Liberty Alliance Engineering Requirements Docu-
ment, Version 0.2, 9 March 2002.

[5] H. Mauldin and T. Wason (ed.), Liberty Architecture Glossary, Ver-
sion 1.1, 15 January 2003, http://www.projectliberty.org/specs/liberty-
architecture-tech-glossary-v1.1.pdf

[6] J. Beatty
and J. Kemp (ed.), Liberty Protocols and Schemas Speci�cation, Ver-
sion 1.1, 15 January 2003, http://www.projectliberty.org/specs/liberty-
architecture-protocols-schemas-v1.1.pdf

[7] Project Liberty: Marketing Requirements Document: Phase I | Au-
thentication Sharing, 17 April 2002.

[8] G. Ellison, J. Hodges, and S. Landau, Security and Privacy Concerns
in Liberty Alliance Version 1.1 Speci�cations, 12 February 2003.

[9] S. Pruitt, \Microsoft's Newest Browser Has Gained Signi�cant Market
Share, so What Will Become of its Closest Rival?," PC World, 27 March
2002, http://www.pcworld.com/news/article/0,aid,91483,00.asp

[10] RFC2616, Hypertext Transfer Protocol { HTTP/1.1, June 1999.

28

[11] RFC2396, Uniform Resource Identi�ers (URI): Generic Syntax, August
1998.

[12] SAML v. 1.0, Speci�cation Set, 31 May 2002, http://www.oasis-
open.org/committees/security/]documents

[13] A.Frier, P. Karlton, and P. Kocher, \The SSL Protocol Version 3.0,"
ftp.netscape.com/pub/review/ssl-spec.tar.Z, 4 March 1996.

Glossary

DNS: The Internet Directory System, a distributed database implemented
in a hierarchy of name servers which translate the mnemonic URI hostnames
to Internet addresses

Circle of Trust: A group of Service and Identity Providers that have busi-
ness relationships built on top of Liberty-enabled technology and guidelines.[5]

client: program that establishes a connection for the purpose of sending
requests, e.g., a browser [10].

federated network identity: a system for binding multiple accounts for a
given user.

network identity : the global set of attributes composed from an individ-
ual's various account(s) [1].

29

About the Authors

Susan Landau is Senior Sta� Engineer at Sun Microsystems Laborato-
ries. Before joining Sun, she was a faculty member at the University of Mas-
sachusetts and Wesleyan University, and held visiting positions at Yale, Cor-
nell, and the Mathematical Sciences Research Institute at Berkeley. She and
Whit�eld Di�e have written \Privacy on the Line: The Politics of Wiretap-
ping and Encryption," which won 1998 Donald McGannon Communication
Policy Research Award, and the 1999 IEEE-USA Award for Distinguished
Literary Contributions Furthering Public Understanding of the Profession.
Landau is also primary author of the 1994 Association for Computing Ma-
chinery report \Codes, Keys, and Conicts: Issues in US Crypto Policy."
Before becoming involved in policy, Landau had worked in symbolic com-
putation and algebraic algorithms, discovering several polynomial-time al-
gorithms for problems that previously only had exponential-time solutions.
She is a Fellow of the American Association for the Advancement of Science.
Landau is a member of the National Institute of Standards and Technol-
ogy's Computer System Security and Privacy Advisory Board, as well as a
member of the Association for Computing Machinery's Advisory Committee
on Privacy and Security, and ACM's Committee on Law and Computing
Technology. She has appeared on NPR several times, and has had articles
published in the \Chicago Tribune," the \Christian Science Monitor," \Sci-
enti�c American," as well as numerous scienti�c journals.

Je� Hodges is an Architect at Sun Microsystems, working in the areas
of identity solutions, distributed infrastructure, and security. His interests
lie in the nature of \network identity" and its realization via composition of
authentication, security, and directory technologies. He is a participant in
the Liberty Alliance e�ort and editor of the Liberty Version 1.0 Architecture
Overview. He served as co-chair of the OASIS Security Services Technical
Committee, shepherding and contributing to the work on Security Assertion
Markup Language (SAML). His past work has included contributions to the
design of the LDAPv3 directory access protocol { speci�cally, co-authoring
of RFCs 2829 and 2830. Additionally, he contributed to the design and
deployment of Stanford University's SUNet ID and Registry/Directory in-
frastructure. Prior to joining Sun, he's held engineering positions at Oblix,
Inc., Stanford University, and Xerox.

30

